Face Parsing via a Fully-Convolutional Continuous CRF Neural Network

نویسندگان

  • Lei Zhou
  • Zhi Liu
  • Xiangjian He
چکیده

In this work, we address the face parsing task with a Fully-Convolutional continuous CRF Neural Network (FCCNN) architecture. In contrast to previous face parsing methods that apply region-based subnetwork hundreds of times, our FCCNN is fully convolutional with high segmentation accuracy. To achieve this goal, FC-CNN integrates three subnetworks, a unary network, a pairwise network and a continuous Conditional Random Field (C-CRF) network into a unified framework. The high-level semantic information and low-level details across different convolutional layers are captured by the convolutional and deconvolutional structures in the unary network. The semantic edge context is learnt by the pairwise network branch to construct pixel-wise affinity. Based on a differentiable superpixel pooling layer and a differentiable C-CRF layer, the unary network and pairwise network are combined via a novel continuous CRF network to achieve spatial consistency in both training and test procedure of a deep neural network. Comprehensive evaluations on LFW-PL and HELEN datasets demonstrate that FC-CNN achieves better performance over the other state-of-arts for accurate face labeling on challenging images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Parsing via Recurrent Propagation

Face parsing is an important problem in computer vision that finds numerous applications including recognition and editing. Recently, deep convolutional neural networks (CNNs) have been applied to image parsing and segmentation with the state-of-the-art performance. In this paper, we propose a face parsing algorithm that combines hierarchical representations learned by a CNN, and accurate label...

متن کامل

Convolutional Neural Network Based Semantic Tagging with Entity Embeddings

Unsupervised word embeddings provide rich linguistic and conceptual information about words. However, they may provide weak information about domain specific semantic relations for certain tasks such as semantic parsing of natural language queries, where such information about words or phrases can be valuable. To encode the prior knowledge about the semantic word relations, we extended the neur...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Looking at Outfit to Parse Clothing

This paper extends fully-convolutional neural networks (FCN) for the clothing parsing problem. Clothing parsing requires higher-level knowledge on clothing semantics and contextual cues to disambiguate fine-grained categories. We extend FCN architecture with a side-branch network which we refer outfit encoder to predict a consistent set of clothing labels to encourage combinatorial preference, ...

متن کامل

Interlinked Convolutional Neural Networks for Face Parsing

Face parsing is a basic task in face image analysis. It amounts to labeling each pixel with appropriate facial parts such as eyes and nose. In the paper, we present a interlinked convolutional neural network (iCNN) for solving this problem in an end-to-end fashion. It consists of multiple convolutional neural networks (CNNs) taking input in different scales. A special interlinking layer is desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.03736  شماره 

صفحات  -

تاریخ انتشار 2017